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Abstract 

The mathematical formulation of portfolio optimization is built up from basic principles in the 

Markowitz mean-variance framework. The return and risk of a portfolio of financial assets is 

modelled as the expectation and variance of a discrete random variable respectively using 

Modern Portfolio Theory. Then, an investor’s goals are formulated as an objective function with 

constraints as a convex optimization problem. Single period and multi-period models are 

considered, and control is introduced via Model Predictive Control and Reinforcement Learning. 

We use historical data from Nov 2023 to Nov 2024 of the “Magnificent 7” stocks in the US 

market from Yahoo Finance as a numerical example to illustrate these concepts. Accurate 

estimates of future returns are shown to be the deciding factor in practical portfolio optimization. 

 

Individual Contribution 

As portfolio optimization is a widely established field, there were a wide array of state-of-the-art 

literature using advanced mathematics that I felt I could not contribute much to. As such, this 

paper focuses on its mathematical derivations and its modelling factors. The novelty of this paper 

are as follows: 

- Illustrating basic concepts in Modern Portfolio Theory and the classic Markowitz 

framework using real data of the “Mag 7” tech stocks. 

- Calafiore (2008) MPO’s single decision variable framework is used with point estimates 

and no-serial correlation assumption to formulate the 2-period, 4-period case, and MPC 

model in section 5.2, 5.3, chapter 6, and tested with real data.  

- As far as I am aware, a novel RL algorithm is developed using basic RL concepts 

emulating the traditional mean-variance objective with a risk penalty. 

The project was done completely over code in Python and Vscode as the development 

environment software. All code can be found online at (https://github.com/mateusy7/portopt). 
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Chapter 1 Introduction 

 

1.1 Background and Motivation 

Portfolio optimization is the process of allocating capital across a selection of financial assets to 

achieve specific investment objectives, most commonly maximizing expected return for a given 

level of risk. It forms the foundation of modern investment management and is used across 

diverse contexts—from algorithmic trading to the long-term asset allocation strategies of pension 

funds and endowments. By systematically balancing the trade-off between risk and return, 

portfolio optimization enables investors to make data-driven, rational decisions aligned with their 

goals and risk tolerance. 

 

1.2 Aims and Objectives 

The aim of this paper is to explain the mathematical formulation of portfolio optimization from 

first principles and build up to current methods. Secondly, to show how predictions and control 

variables affect the system. Finally, what the characteristics of different models are and to 

compare their performance. Treatment of the subject will be limited to discrete time. 

Basic Objectives 

1. Review the literature on portfolio optimization focusing on discrete-time settings. 

2. Explain and build a model of portfolio optimization using current methods. 

3. Illustrate how portfolio optimization can be modelled as a state-spaced control problem 

under constraints in single and multi-period formulations. 

4. Explore how using different control variables and varying them affect the system 

dynamics and how predictions can be incorporated into the model. 

Advanced Objectives 

5. Attempt to characterize the uncertainty of the system and incorporate it into the model. 

6. Incorporate Reinforcement Learning as a control technique in portfolio optimization. 



7. Illustrate at a basic level the extension of portfolio optimization to a continuous-time 

setting. 

 

1.3 Project Management 

 

In terms of project management, the progress plan from the Gantt Chart above made in week 4 

turned out to be pretty accurate to Semester 1 and so the plan was not changed for Semester 2.  

During semester 2, the difference between the result for the efficient frontier of the tested data 

and the expected result was reconciled during the first week and the data simulated using Monte 

Carlo simulation now shows the expected result. From week 2 to week 4, study on convex 

optimization was embarked upon and control variables and incorporating predictions were 

implicit in solving the single period optimization problem. Difficulty arose starting in week 4 

during the study of the multi-period models. Both the open-loop and MPC case turned out to be 

more difficult than expected and the mathematical formulation for that extended well into week 8 

before the spring break which pushed back the schedule by 2-3 weeks. Reinforcement learning 

was incorporated during week 9 and 10. Uncertainty was incorporated implicitly in the MPC and 



RL models. The dissertation was also continued during week 9 and was finally completed in 

week 10. 

 

1.4 Overview of Report 

Chapter 2 introduces the mean-variance framework pioneered by Markowitz which is 

accompanied by a short summary of Moden Portfolio Theory. It concludes with a review of the 

literature on portfolio optimization. 

Chapter 3 explains the basic concepts and terminology used in the modelling of stocks or 

financial assets using probability theory. Efficiency defined by Markowitz is explained to 

characterize the performance of holding a particular portfolio of assets. 

Chapter 4 explores Modern Portfolio Theory in more depth and used to build up a simple two-

asset portfolio, and how the risk-free asset comes into play, and how we generalize to the multi-

asset case. An analytical solution for the minimum-variance portfolio and the tangent portfolio is 

shown for the “Mag 7” stocks at the end. 

Chapter 5 discusses portfolio optimization as a convex optimization problem in terms of an 

objective, and how preferences of the investor such as an expected return, a minimum risk, or 

real-world constraints such as turnover, trading limits or costs can be formulated as the 

constraints of the problem. The models are compared assuming perfect estimates of expected 

returns and covariance matrices. 

Chapter 6 extends the multi-period case to incorporate control and feedback from actual market 

outcomes to form the closed-loop Model Predictive Control model. All the models are compared 

in a new realistic scenario where estimates of mean and risk are not known beforehand and are 

estimated with historical data. 

Chapter 7 illustrates the formulation of the portfolio optimization with Reinforcement Learning 

and explains its similarity to state-spaced control and convex optimization. 

Chapter 8 concludes with the summary of our findings and gives an evaluation of the different 

models and the practical concerns when using the models in a realistic setting.  



Chapter 2 Literature Review 

To see how optimization and control theory are closely related to portfolio optimization, we must 

first look at contemporary methods of how mathematics is applied to finance, and arguably the 

most prominent of which is portfolio theory. This concept was pioneered by Harry Markowitz in 

his doctoral dissertation “Portfolio Selection” in 1952 which revolutionised the way academics 

and practitioners think about investment management by providing the first rigorous framework 

of modelling a portfolio of financial assets, now more popularly known as mean-variance 

analysis or Modern Portfolio Theory (MPT).  

The theory centers around the assumption that a rational investor intends to maximise their return 

while minimising the risk (potential downsides or lost) of their investments. Although it is not 

without criticism, Warren Buffett, who is widely regarded as the best investor in history has 

criticized the way of thinking of the risk of a stock as volatility in its price movement (Buffett, 

1993) but it is our current best model.  

Markowitz (1952) mathematically formalised the idea that diversification reduces portfolio risk 

by combining assets with low or negative correlations. He developed the concept of the efficient 

frontier, a set of a portfolios that are optimal in terms of risk and return. The idea of a risk-free 

interest rate from (Fisher, 1930) was used by (Tobin, 1954) to introduce the Capital Market 

Line (CML), the straight line connecting the risk-free rate to the tangency portfolio. He 

demonstrated how to achieve an optimal portfolio on the efficient frontier when combining it 

with a risk-free asset. William Sharpe extended upon Markowitz’s and Tobin’s work by 

assuming market equilibrium (Sharpe, 1964), and developed the Capital Asset Pricing Model 

(CAPM) as a model to explain how individual assets are priced in equilibrium relative to the 

market. The CAPM assumes that idiosyncratic risks – the component of an asset’s total risk that 

is unique to that asset and not explained by the overall market can be diversified away in a well-

diversified portfolio. Hence, only the 𝛽 (beta) – the systematic risk of the individual asset 

relative to the market should be considered as the risk premium for holding that asset. However, 

many papers have since criticized the assumption that expected excess return of an asset is only 

determined by market covariance. Classically, Fama and French (1993) showed that a three-

factor model which includes a firm’s size (market capitalization) and a value premium (high 



book-to-market stocks) and later a five-factor model Fama and French (2015) better capture the 

sources of expected returns rather than just a single factor model of the CAPM. Papers such as 

Lo and Mackinlay (1988) and Barberis, Shleifer and Vishny (1998) even directly challenge the 

Efficient-Market Hypothesis which assumes that markets are fully informationally efficient. 

Throughout most of the extensive history (Kolm, Tutuncu and Fabozzi, 2014) of the original 

Markowitz mean-variance problem, algorithms like quadratic programming provided exact 

optimal solutions. However, as practical constraints and more assets are considered, the 

computational complexity becomes NP-hard and so approximation techniques must be 

considered (Kalayci et al. 2019). Extensions to the single-period formulation include dynamic 

models such as those proposed by Calafiore (2008), who presents two multi-period strategies: an 

open-loop approach, where weights are fixed over the horizon, and a closed-loop or receding 

horizon strategy, where allocations are updated based on observed returns. The latter approach 

drawing analogies to feedback mechanisms used in optimal control. 

Modern developments demonstrate dynamic decision-making in stochastic processes, setting the 

stage for portfolio strategies (Li, Uysal and Mulvey, 2022) that integrate principles from control 

theory to adapt more effectively to uncertainty in financial markets. 

 

 

 

 

 

 

 

 

  



Chapter 3 Concepts and Terminology 

 

3.1 Return 

We denote a portfolio 𝑃 with financial assets 𝐴𝑖 , 𝑖 = 1, 2, … , 𝑛 where n is the number of assets in 

the portfolio. Using probability theory, the future return 𝑅𝑃 of the portfolio over a certain period 

can be modelled as the expected return: 

𝐸(𝑅𝑃) = ∑ 𝑋𝑖𝑅𝑖̅
𝑛
𝑖=1     (Eq. 3.1) 

where 𝑅𝑖̅ is the average return and 𝑋𝑖 is the proportion of asset 𝐴𝑖 in the portfolio 𝑃 over the 

period respectively. 

3.2 Risk 

According to MPT, risk can be modelled using variance or standard deviation of the return of an 

asset defined by: 

𝑉𝑎𝑟(𝑅) = 𝐸((𝑅 − 𝑅̅)2), 𝑜𝑟, 𝜎𝑅 = 𝑉𝑎𝑟(𝑅)
1

2  (Eq. 3.2) 

 

3.3 Efficiency 

To start out, two fundamental assumptions are made: 

1. According to the CAPM, individual assets are correctly priced based on their risk relative 

to the market. 

2. We can estimate the expected returns and risk of stocks by their historical prices. 

Then determining the best portfolio (the portfolio with the optimal weight allocations across the 

assets) out of all possible portfolios moves from picking the asset that we think will provide the 

highest future returns, to a conversation of comparing portfolios with varying risk and returns 

with each other. The following definitions from (Joshi, 2013) can then be laid out. 



Definition 1: The set of all possible pairs of returns and standard deviations attainable 

from investing in a collection of assets is called the opportunity set. 

Definition 2: A portfolio is efficient relative to a given opportunity set provided no other 

portfolio in that opportunity set 

1. Has at least as much expected return and lower standard deviation, and 

2. Has a higher return and an equal or smaller standard deviation 

Definition 3: The subset of the opportunity set which is efficient is called the efficient 

frontier. 

Efficiency is defined relative to the set of investment opportunities, changing the set of assets 

available to investors also changes the set of efficient portfolios. 

  



Chapter 4 Modelling stocks with Modern Portfolio Theory 

 

4.1 Two asset portfolio 

We consider the simple case of the opportunity set consisting of two risky assets A and B, 

and attempt to construct a relationship between the risk and return of the set of portfolios of 

these 2 assets. 

Assuming investment fractions 𝑋𝐴 and 𝑋𝐵 such that 

𝑋𝐴 + 𝑋𝐵 = 1 

and from (Eq. 3.1) we get 

𝑅𝑃 = 𝑋𝐴𝑅𝐴 + 𝑋𝐵𝑅𝐵     (Eq. 4.1) 

Then applying the linearity of expectations to (Eq. 4.1): 

𝐸(𝑅𝑃) =  𝑋𝐴𝐸(𝑅𝐴) + (1 − 𝑋𝐴)𝐸(𝑅𝐵) 

=  𝑋𝐴(𝐸(𝑅𝐴) − 𝐸(𝑅𝐵)) + 𝐸(𝑅𝐵)   (Eq. 4.2) 

and applying the property of variance to (Eq. 4.1): 

𝜎𝑃
2 = 𝑋𝐴

2𝜎𝐴
2 + (1 − 𝑋𝐴)𝜎𝐵

2 + 2𝑋𝐴(1 − 𝑋𝐴)𝜎𝐴𝐵   (Eq. 4.3) 

We can see then that the expected return is linear in XA whilst the variance is quadratic and also 

depend on the correlation between the two assets. 

We illustrate the parabola curve in the risk-return space using a numerical example for the assets 

A and B. Using the parameters for expected returns of 12 and 8, standard deviations of 20 and 15 

for A and B respectively, and correlation of 0.3, the efficient frontier for this opportunity set was 

computed using (Eq. 4.3) with 100 weightings of 𝑋𝐴 from 0 to 1 in increments of 0.01. The 

resulting plot from Python is shown in Fig. 4.1. 



 

Fig. 4.1: Efficient frontier for two risky assets 

 

4.2 Risk-free asset and the Tangent Portfolio 

We introduce the risk-free asset with the definition from (Joshi, 2013) as follows: 

Definition 4: An asset whose return is known in advance is said to be risk-free. An asset f, is 

risk-free if and only if: 

1. The variance of returns is zero 

2. The standard deviation of returns is zero 

Suppose that a portfolio P consists of 1 – y units of the risk-free asset f with return Rf, and y units 

of the risky asset (or a portfolio of risky assets) A with return RA, then expected return of P is 

then 

𝑅𝑃
̅̅̅̅ = (1 − 𝑦)𝑅𝑓 + 𝑦𝑅𝐴

̅̅ ̅    (Eq. 4.4) 

applying the property of variance, and since Rf is riskless, the risk of the portfolio would be 



𝑉𝑎𝑟(𝑅𝑃) = 𝑦2𝑉𝑎𝑟(𝑅𝐴),  

𝜎𝑃 = |𝑦|𝜎𝐴 

Restricting y ≥ 0, we have 

𝑦 =  
𝜎𝑃

𝜎𝐴
 

Substituting y into (Eq. 4.4), we have 

𝑅𝑃
̅̅̅̅ =

𝑅𝐴
̅̅ ̅ − 𝑅𝑓

𝜎𝐴
𝜎𝑃 + 𝑅𝑓 

This shows that the new portfolio P, which is combination of a risk-free asset with a risky 

portfolio A produces a straight line for the opportunity set, which is called the Capital Market 

Line (Tobin, 1958). The gradient 
𝑅𝐴̅̅ ̅̅ −𝑅𝑓

𝜎𝐴
 turns out to be the Sharpe ratio (Sharpe, 1964), which 

represents the ratio of return per unit of increase in risk that an investor undertakes.  

 

The CML, the entire line through points (0, Rf) and (𝜎𝐴, 𝑅𝐴
̅̅ ̅) for a particular portfolio of risky 

assets and a risk-free asset is efficient. We state two theorems from (Joshi, 2013) omitting the 

proof. 

Theorem 1: If there is a risk-free asset, all efficient portfolios lie on a straight line in 

standard deviation/expected return space. 

Even after discarding the risk-free asset, investing solely in a portfolio of risky assets A is itself 

efficient if the new portfolio P is efficient. 

Theorem 2: If P is efficient, then the portfolio A consisting of risky assets in P is efficient 

relative to investing solely in risky assets. 

 



Reconciling the CML with the opportunity set for a portfolio of risky assets A, we summarize 

omitting the full proof from (Joshi, 2013) that 

1. The efficient set of A is a hyperbola in risk/return space. 

2. Combining the risk-free asset Rf with risky assets A produces a new portfolio P that is a 

straight line through points (0, Rf) and (𝜎𝐴, 𝑅𝐴
̅̅ ̅). And this whole line is also efficient. 

3. The point of tangency of the efficient line P and the hyperbola efficient set of A is an 

efficient portfolio called the tangent portfolio. 

 

4.3 Multi-asset portfolio 

Generalising to the multi-asset case, A is now a portfolio of risky assets with return 𝑅𝐴
̅̅ ̅ and 

standard deviation 𝜎𝐴 given by 

𝑅𝐴
̅̅ ̅ =  〈𝑥, 𝑅̅〉, 𝑎𝑛𝑑 𝜎𝐴 = (𝑥𝑇𝐶𝑥)

1

2    (Eq. 4.5) 

where x is a vector or portfolio weights, C is the covariance matrix, and 𝑅̅ is the vector of returns 

for the underlying assets, and notation 〈𝑎, 𝑏〉 denotes the dot product of vectors 𝑎 and 𝑏. 

Let us now illustrate the efficient frontier in solely the risky case when holding a portfolio of 7 

stocks. Raw public data of the closing prices for the 7 stocks of Apple, Amazon, Google, Meta, 

Microsoft, Nvidia and Tesla were analysed from 27th November 2023 to 22nd November 2024. 

The period was 252 days or roughly equivalent to a full year’s worth of trading days. 



 

Fig. 4.2: The cumulative returns of the 7 tech stocks for a full year 

From the daily closing prices, 3 statistics were computed for each stock. Simple returns from the 

start to end period, daily percentage returns, and the cumulative returns for the whole period. 

Cumulative returns were then plotted using Python to produce Fig. 4.2. 

Using (Eq. 4.5), we compute expected returns and the standard deviations of the 7 stocks from 

data of daily returns. The covariance matrix can also be determined analytically from the data but 

here the pandas library from python was used. Then using Monte Carlo simulations for 10,000 

random weights and allowing for short selling, we compute the opportunity set and plot it as 

shown in Fig. 4.3. 



 

Fig. 4.3: The opportunity set of the “Magnificent 7” stocks including short selling 

 

In practice, an investor would want to take into account the return of their portfolio in relation to 

the return of the risk-free asset. From section 4.2, we know that the tangent point between the 

CML and the opportunity set for a portfolio of risky assets gives us the tangent portfolio, the 

efficient portfolio where all the funds are invested in the risky assets and none in the risk-free 

asset. 

Hence, the problem now reduces to maximizing the slope 

𝜃 =  
𝑅𝐴
̅̅ ̅ − 𝑅𝑓

𝜎𝐴
 

=
〈𝑥, 𝑅̅〉 − 𝑅𝑓

(𝑥𝑇𝐶𝑥)
1
2

  

with the constraint ∑ 𝑥𝑖
𝑛
𝑖=1 = 1. 

From (Joshi, 2013), the algorithm for computing the tangent portfolio weights of vector x is: 



1. Let 𝑅𝑖̃ = 𝑅𝑖̅ − 𝑅𝑓 

2. Solve 𝐶𝑦 =  𝑅̃ 

3. Set 𝑥𝑖 =
𝑦𝑖

∑ 𝑦𝑗
𝑛
𝑗=1

 

If an investor wants to determine the efficient portfolio with the minimal risk, and hence the 

minimal variance portfolio (MVP), we can vary the risk-free rate to get lower and lower, the 

slope of the CML gets steeper and steeper, and the tangent portfolio gets closer to the tip (i.e. the 

point of minimal variance). Omitting the full proof from (Joshi, 2013), it follows that the weights 

𝑥 of the MVP can be obtained by letting the risk-free rate tend to –∞, and we have 

𝑥 =  
𝐶−1𝑒

〈𝐶−1𝑒, 𝑒〉
 

where e is a vector of ones of size n. 

We use the algorithm to compute the tangent portfolio weights, and the equation for the MVP 

weights to compute the MVP weights. The expected return and standard deviations of the 

tangent portfolio of the “Magnificent 7” stocks are shown in Fig. 4.4 below. 

 

Fig. 4.4 

while for the MVP they are shown in Fig. 4.5 below. 

 

Fig. 4.5 

Assuming the November 2024 1-month Treasury Rate of 4.72% as the theoretical risk-free asset, 

the new efficient line of portfolios including the tangent portfolio produces a plot in Fig. 4.6. 



 

Fig. 4.6: The tangent portfolio and MVP of the 7 tech stocks including short selling 

 

The CML crosses the opportunity set of risky stocks A at the tangent portfolio with inefficient 

portfolios lying under the curve. We note here that because the overall return of the “Magnificent 

7” stocks during this period were so high, the risk-free rate of 0.0472 (4.72%) is almost 

insignificant even if a slightly different risk-free rate were used. 

 

 

  



Chapter 5 Portfolio Optimization with Convex Optimization 

 

5.1 Single Period Optimization (SPO) 

We have found an analytical solution for the portfolio weights 𝑥𝑖 for the MVP and the 

Tangent Portfolio. To find the optimal weights 𝑥𝑖 given any minimum return or maximum 

risk for the portfolio, we can extend the problem to a convex optimisation problem where 

the requirements of the portfolio are formulated as the objective function and its constraints. 

The two classic forms are: 

1. Minimize risk (variance) given an expected return (mean) 

𝑚𝑖𝑛
𝑥

𝑥𝑇Σ𝑥 

𝑠. 𝑡. 𝜇𝑇𝑥 ≥ 𝑅, 

1𝑇𝑥 = 1; 𝑥 ≥ 0 

where 𝑥 ∈ ℝ𝑛 is a weight vector of n assets, 𝜇 ∈ ℝ𝑛 is the expected return vector and 𝑅 is the 

minimum return. 

2. Maximize expected return given a risk constraint 

𝑚𝑎𝑥
𝑥

𝜇𝑇𝑥 

𝑠. 𝑡. 𝑥𝑇Σ𝑥 ≤ 𝜎𝑚𝑎𝑥
2 , 

1𝑇𝑥 = 1; 𝑥 ≥ 0 

where 𝜎𝑚𝑎𝑥
2  is the risk threshold. 

As an illustration, the MVP can be formulated as a quadratic convex optimisation problem where 

the objective function is the variance of the portfolio, and the portfolio weights ∑ 𝑥𝑖 = 1 as an 

equality constraint. Formally: 

𝑚𝑖𝑛 𝑥𝑇Σ𝑥 

𝑠. 𝑡. 𝟏𝑇𝑥 = 1 



A convex optimisation problem can be solved reliably using solvers. We use an open-source 

Python solver CVXPY which makes solving convex optimisation problems in standard form 

easy and straightforward. The results that we obtain are in Fig. 5.1 below: 

 

Fig. 5.1 

As expected, it gives us the same solution as the analytical solution in Fig. 4.5. 

 

A few other formulations of SPO are as follows: 

Mean-variance utility maximization – combines return and risk into a single objective function 

𝑚𝑎𝑥
𝑥

𝜇𝑇𝑥 − 𝛾𝑥𝑇Σ𝑥 

where 𝛾 is the risk aversion coefficient. 

Robust portfolio optimization – addresses uncertainty in the estimates of mean and covariance 

𝑚𝑎𝑥
𝑥

min
𝜇,Σ∈𝒰

𝜇𝑇𝑥 − 𝛾𝑥𝑇Σ𝑥 

where the problem is formulated as a worst-case optimization over an uncertainty set 𝒰. 

Conditional Value-at-Risk (CVaR) based optimization – focusing on downside risk 

𝑚𝑎𝑥
𝑥

𝐸[𝑅(𝑥)] 

𝑠. 𝑡. 𝐶𝑉𝐴𝑅𝛼(𝑥) ≤ 𝜏 

𝟏𝑇𝑥 = 1, 𝑥 ∈ 𝒲 

where 𝒲 is the feasible set, 𝜏 is the risk threshold, 𝐶𝑉𝐴𝑅𝛼(𝑥) is the expected loss beyond a 

given quantile 𝛼. 

To maintain tractability and simplicity, we will not consider the above cases and only consider 

linear and quadratic programs.  



5.2 Multi Period Optimization (MPO) 

A natural extension to SPO would be to consider multiple smaller periods within the overall 

period. The overall period is called the investment horizon, and the smaller periods are split 

between that investment horizon. For example, we can define the investment horizon in which 

we are considering to be the annual year. Then, we can define the period 𝑘 to be a quarter (3 

months) of a year. The investment horizon is then divided equally among 𝑘 = [1, 4] where 𝑘 − 1 

would be the start of the 𝑘th period and 𝑘 would be the end of the 𝑘th period within the horizon. 

We layout the problem and define a few notations from Calafiore and El Ghaoui (2014). The 

simple return of an investment in asset 𝑖 over the 𝑘-th period from (𝑘 − 1)Δ to 𝑘Δ is: 

𝑟𝑖(𝑘) ≐
𝑝𝑖(𝑘) − 𝑝𝑖(𝑘 − 1)

𝑝𝑖(𝑘 − 1)
, 𝑖 = 1, … , 𝑛; 𝑘 = 1,2, … , 

𝑔𝑖(𝑘) ≐ 1 + 𝑟𝑖(𝑘), 𝑖 = 1, … , 𝑛; 𝑘 = 1,2, …, 

where 𝑔𝑖(𝑘) is the corresponding gain. 

Then,  

𝑔(𝑘) = 1 + 𝑟(𝑘) 

= [
1
⋮
1

] + [
𝑟1(𝑘)

⋮
𝑟𝑛(𝑘)

] , 

𝐺(𝑘) = 𝑑𝑖𝑎𝑔(𝑔(𝑘)) 

=  [
1 + 𝑟1(𝑘) ⋯ 1

⋮ ⋱ ⋮
1 ⋯ 1 + 𝑟𝑛(𝑘)

] , 

Φ(𝑣, 𝑘) ≐ 𝐺(𝑘)𝐺(𝑘 − 1) ⋯ 𝐺(𝑣), 

Φ(𝑘, 𝑘) ≐ 𝐺(𝑘) 

where 𝑔(𝑘) denotes the vector of gains of the assets over the 𝑘-th period, 𝑟(𝑘) being the vector 

of the assets’ returns, 𝐺(𝑘) is the diagonal matrix of the elements of 𝑔(𝑘), and Φ(𝑣, 𝑘) is the 

compounded gain matrix from the beginning of period 𝑣 to the end of period 𝑘 where 𝑣 ≤ 𝑘. 

 

The investor’s total wealth at time 𝑘 is 



𝑤(𝑘) = ∑ 𝑥𝑖(𝑘)𝑛
𝑖=1 = 𝟏𝑇𝑥(𝑘)    (Eq. 5.1) 

where 𝑥(𝑘) = [𝑥1(𝑘) ⋯ 𝑥𝑛(𝑘)]𝑇 is the vector of portfolio weights at time 𝑘. 

The random portfolio composition at time 𝑘 = 1, … , 𝑇 is 

𝑥(𝑘) = Φ(1, 𝑘)𝑥(0) + ∑ Φ(𝑗, 𝑘)𝑢(𝑗 − 1)𝑘
𝑗=1   (Eq. 5.2) 

where 𝑢(𝑗 − 1) is the portfolio inputs for assets 𝑖 = 1, … , 𝑛 at the beginning of period 𝑘 = 𝑗 − 1. 

From (Eq. 5.1), the total wealth at time 𝑘 can be written compactly as 

𝑤(𝑘) = 1𝑇𝑥(𝑘) = 𝜙(1, 𝑘)𝑥(0) + 𝑤𝑘
𝑇𝑢   (Eq. 5.3) 

where 𝜙(𝑣, 𝑘) = 1𝑇Φ(𝑣, 𝑘) is the row vector of the compounded gain matrix Φ(𝑣, 𝑘), and 𝑤𝑘
𝑇 =

[𝜙(1, 𝑘) ⋯ 𝜙(𝑘 − 1, 𝑘) 𝜙(𝑘, 𝑘)] is the row vector of all the compounded gain matrices of 

period 1 to period 𝑘. 

Incorporating 𝑥(0) into the dynamics of the portfolio input 𝑢, we can simplify (Eq. 5.3) to 

𝑤(𝑇) = 𝑤𝑇
𝑇𝑢      (Eq. 5.4) 

where 

𝑢 = [𝑤(0) 𝑢(1) ⋯ 𝑢(𝑇 − 1)]𝑇 ∈ ℝ𝑛𝑇 , 

𝑤𝑇
𝑇 = [𝜙(1, 𝑇) 𝜙(2, 𝑇) ⋯ 𝜙(𝑇, 𝑇)] ∈ ℝ1×𝑛𝑇 

 

The objective function is defined as 

𝐽(𝑇) = ∑ Var(w(k))

𝑇

𝑘=1

 

𝑠. 𝑡. ∑ 𝑤𝑖(0) = 1

𝑛

𝑖=1

, 

∑ 𝑢𝑖(𝑘) = 0

𝑛

𝑖=1

; 𝑘 = 1, … , 𝑇 − 1 



where 𝑤(0) = 1 is the fully invested constraint at the start of the investment horizon and 𝑢(𝑘) =

0 is the self-financing constraint at each timestep 𝑘, and 𝑛 is the number of assets. 

The multi-period formulation can then be written as a single period minimization problem as 

𝑚𝑖𝑛
𝑤(0),𝑢(1),…,𝑢(𝑇−1)

𝑉𝑎𝑟 (𝑤(𝑇)) 

Then  

𝑉𝑎𝑟(𝑤(𝑇)) 

= 𝑉𝑎𝑟(𝑤𝑇
𝑇𝑢) 

= 𝑢𝑇𝐶𝑜𝑣(𝑤𝑇)𝑢 

= 𝑢𝑇𝑄𝑢 

where 𝑄 = 𝐶𝑜𝑣(𝑤𝑇). 

Using historical covariances as point estimates for each period 𝑘 = 1, 2 … , 𝑇 and assuming that 

the probability distribution of asset returns between each period as independent and identically 

distributed (IID) random variables, the risk matrix 𝑄 can be estimated as a block-diagonal matrix 

of each period’s covariance matrix with zero correlation with each other: 

𝑄 =  [
Σ1 0 0
0 ⋱ 0
0 0 Σ𝑘

] 

where Σ𝑘 = 𝐶𝑜𝑣(𝑔(𝑘)) us the covariance matrix of gains at time 𝑘. 

To summarize, we choose rebalancing vectors 𝑤(0), 𝑢(1), … , 𝑢(𝑇 − 1) that minimise the 

variance of terminal wealth 𝑤(𝑇) = 𝑤𝑇
𝑇𝑢. With IID and zero serial correlation between periods 

assumptions, the risk matrix 𝑄 is a block diagonal matrix of each period’s covariance matrix. 

The optimization problem is: 

𝑚𝑖𝑛
𝑤(0),𝑢(1),…,𝑢(𝑇−1)

𝑢𝑇𝑄𝑢     (Eq. 5.5) 

𝑠. 𝑡. 𝟏𝑇𝑤(0) = 1, 

𝟏𝑇𝑢(𝑘) = 0, 𝑘 = 1, … , 𝑇 − 1, 

𝑄 = 𝐶𝑜𝑣(𝑤𝑇) ∈ ℝ+
𝑛𝑇×𝑛𝑇 , 



𝑤(0), 𝑢(𝑘) ∈ ℝ𝑛; 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑠𝑒𝑡; 𝑇 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑒𝑟𝑖𝑜𝑑𝑠 

This is a quadratic convex optimization program that can be solved using standard convex 

optimization solvers. 

Again, we illustrate the multi-period case with the MVP using 𝑇 = 2. 

From (Eq. 5.5), the problem is 

𝑚𝑖𝑛
𝑤(0),𝑢(1)

[
𝑤(0)
𝑢(1)

]
𝑇

𝑄 [
𝑤(0)
𝑢(1)

] 

𝑠. 𝑡. 𝟏𝑇𝑤(0) = 1, 

𝟏𝑇𝑢(1) = 0, 

𝑄 = [
Σ1 0
0 Σ2

] , Σ1 = 𝐶𝑜𝑣(𝑅1), Σ2 = 𝐶𝑜𝑣(𝑅2), 𝑅𝑘 = 𝑑𝑎𝑖𝑙𝑦 𝑠𝑖𝑚𝑝𝑙𝑒 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 𝑖𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 𝑘 

From (Eq. 5.4), we compute terminal wealth as  

𝑤(𝑇) = 𝜙(1,2)𝑤(0) + 𝜙(2,2)𝑢(1), 

𝜙(1,2) = 𝑎1 ⊙ 𝑎2, 𝜙(2,2) = 𝑎2, 

where 𝑎1 and 𝑎2 are the vectors of simple returns over the period 1 and period 2 respectively, 

and ⊙ is the element-wise multiplication operator. 

The obtain results in Fig. 5.2 below: 

 

Fig. 5.2 

With a lower risk of 11.6% and a return of 9.5%, it performs better than the single period in both 

metrics of risk of 17.5% and return of 6.7%. The returns between the SPO model and the MPO 

model over the investment horizon is shown in Fig. 5.3 below. 



 

Fig. 5.3: Comparison of returns between the SPO and MPO models 

 

5.3 Effect of length of periods in multi-period models 

To make a comparison between multi-period models with shorter and longer periods within the 

same investment horizon, we compare 𝑇 = 2 and 𝑇 = 4 periods simulating two half periods and 

4 quarter periods over a year respectively. And to force the control inputs 𝑢(𝑘) = [1, 𝑇 − 1] to 

make trades, we add an expected return of 55.26% from the equal-weighted portfolio as the 

benchmark over the investment horizon. Assuming the same self-financing constraints as (Eq. 

5.5), the only difference is added the target expected return formulated as the compounded 

terminal simple return across the periods: 

𝑅𝑡𝑒𝑟𝑚 = ∑ 𝜇(𝑘: )𝑇𝑢(𝑘)

𝑇−1

𝑘=0

 



where the cumulative mean after period 𝑘 is 𝜇(𝑘: ) ∶= ∑ 𝜇(𝑗)𝑇−1
𝑗=𝑘 . Here, 𝑅𝑡𝑒𝑟𝑚 = 55.26%. 

The optimization problem becomes 

min
𝑢∈ℝ𝑛𝑇

𝑢𝑇𝑄𝑢       (Eq. 5.6) 

𝑠. 𝑡. 𝟏𝑇𝑤(0) = 1, 

𝟏𝑇𝑢(𝑘) = 0, 𝑘 = 0, … , 𝑇 − 1, 

(𝜇(0: )𝑇 , 𝜇(1: )𝑇 , … , 𝜇(𝑇 − 1: )𝑇)𝑢 = 𝜌;  𝜌 = 0.5526 

Solving the problem across the full year data of the “Mag 7” stocks, we get the results as shown 

in Fig. 5.4 below. 

Fig. 5.4: Performance metrics of MPO models with perfect quarter estimates 



The results show that the 2-period and 4-period MPO models both outperform the simple equal-

weighted strategy in terms of Std. Dev. (risk) given an expected return using this specific 

scenario. The 4-period MPO model gives the lowest risk (19.84%) out of all the models. It 

should be noted here that the covariance estimates and mean vectors for each period are perfect 

as we are carrying out the experiment in the scenario using the same historical data as the period 

estimates. In this case, 𝜇(0), 𝜇(1), 𝜇(2), 𝜇(𝑘 − 1) and Σ0, Σ1, Σ2, Σ𝑘−1 are known exactly for 

periods 𝑘 = [0, 𝑇 − 1] where 𝑇 = 4 is the number of quarters in the year. 

If say we only have a perfect estimate of the annual return 𝜇 and covariance matrix Σ, we 

compare the MPO models with the annual estimate scaled to the quarter, and we add in the SPO 

model with the annual estimate for comparison. Using the simple equal-weighted portfolio 

across the horizon as the benchmark, we obtain results as Fig. 5.5 below. 

 

Fig. 5.5: Performance metrics of optimization models using annual estimates 

Now, the 4-period MPO model still performs better than the 2-period MPO model looking purely 

at Std. Dev. with a value of 20.32% compared to 22.02%. However, on a Sharpe ratio basis 

which also considers the actual realized returns, the former performs worse with a value of 2.40 

compared to 2.57 of the latter. The SPO model has a Std Dev. of 21.31% which is in the middle 

of both MPO models, but is outperformed by both the MPO models in terms of Sharpe ratio with 

a value of 2.37. All models perform better than the simple equal-weight strategy. 



In practice however, we can never predict even the annual estimates accurately, the focus here is 

only to illustrate the comparison between models given good (in this case: perfect) estimates of 

the return 𝜇 and covariance matrix Σ of the period given everything else equal. 

Within MPO models, it is not even clear whether having more periods within the investment 

horizon improves the model, as the 4-period model performed better in this scenario in terms of 

Std. Dev. but performed worse in terms of Sharpe ratio which considers realized returns. This 

shows that in practice, estimates of 𝜇 and Σ is by far the most dominant factor and is the deciding 

factor in how optimization models perform. A single good estimate across the horizon often 

works better in reality than trying to solve for the problem with inaccurate estimates for multiple 

periods. 

A realistic scenario with practical considerations is shown in the next chapter. 

 

  



Chapter 6 Model Predictive Control and practical concerns 

The MPO problems we have solved so far is the open-loop case, where the portfolio weights are 

derived for every period and are followed through regardless of what the actual market outcomes 

were from previous periods. This usually produces suboptimal or even poor performance for the 

rest of the investment horizon. We modify the open-loop strategy to a closed-loop solution using 

Model Predictive Control (MPC) from control theory or also known as the receding horizon 

approach. At each time step, it predicts future asset returns and risks over the investment horizon 

and solves an optimal sequence of trades over the planning horizon but only executes the first 

decision. At the next time step, it updates its covariance and mean forecasts, takes into account 

evolving constraints like turnover and drawdown, then repeats the process again. This adapts to 

the market as new information becomes available. 

 

The models so far have been tested on a single scenario using historical data from the same 

sample. This was useful to illustrate the differences between models given perfect estimates of 

future outcomes however past estimates often do not reflect the future. To make a fair 

comparison, we divide our yearly data on the “Mag 7” stocks into 4 quarters, where 𝜇 and Σ 

estimates are used from the first quarter Q1, and the optimization models are tested on unseen 

data from the remaining 3 quarters denoted as Q2, Q3, Q4. 

 

We test all three models discussed so far: Single period optimization (SPO), Open-loop multi-

period optimization (MPO) and now the Model Predictive Control model (MPC) over the same 

investment horizon of 3 quarters. As a benchmark, we solve the optimization problems with an 

expected minimum return of 32.21% which is the return from a simple equal-weighted portfolio 

over the 3 quarters. The MPC strategy is outlined below: 

1) Solve the multi-period optimization problem over quarters Q2, Q3, Q4 using the block 

diagonal covariance matrix Q and mean vector of returns 𝜇 from Q1 scaled to 3 quarters 

as estimates.  

2) Only execute the first solved weights for Q2. 



3) At the end of Q2, calculate actual realised returns and re-solve the MPO problem for Q3 

using updated estimates from Q2, execute the weights for the first period. 

4) Repeat at the start of Q4. 

5) Calculate end of horizon realised returns and risks. 

The MPC is mathematically equivalent to (Eq. 5.6) with the only difference being the model is 

solved at the again every period 𝑡 using updated 𝜇 estimates from the previous period. We write 

this as 

min
𝑢(𝑡)∈ℝ𝑛(𝑇−𝑡)

𝑢(𝑡)𝑇𝑄(𝑡)𝑢(𝑡)      (Eq. 5.6) 

𝑠. 𝑡. 𝟏𝑇𝑤(𝑡) = 1, 

𝟏𝑇𝑢(𝑘) = 0, 𝑘 = 𝑡 + 1, … , 𝑇 − 1, 

(𝜇(𝑡: )𝑇 , 𝜇(𝑡 + 1: )𝑇 , … , 𝜇(𝑇 − 1: )𝑇)𝑢(𝑡) = 𝜌𝑡 

where the target return 𝜌𝑡 = 0.3221  

 



Fig. 6.1: Performance metrics between models in a practical scenario 

 

Fig. 6.1 above shows the results for the 3 models with the equal-weighted portfolio as the 

benchmark. All 3 models perform poorly compared to the equal-weighted portfolio. As expected, 

accurate estimates of future returns play a significant role in mean-variance frameworks. 

Leaving that aside, we compare only the 3 models that used the same estimates. The multi-period 

open-loop model (MPO-OL) performed the worse with the highest risk at 6.68% and a mere 

return of 5.25%. MPO-OL optimizes the portfolio weights over all the periods at the start of the 

investment horizon and executes the remaining trades regardless of new market information or 

outcomes. The MPC and SPO models are comparable with the MPC model having slightly lower 

std. at 4.88% compared to 5.07% of the SPO model but the SPO model beating out the MPC 

model slightly with a return of 12.69% compared to 12.30%. In this case, the simple SPO model 

shows how it often performs better in reality compared to advance models such as the MPO 

models which often require accurate estimates over multiple periods to perform well. However, 

the MPC showcases how adapting to new market information from each quarter helped the 

model produce better results in the end by optimize the trade decisions accordingly. 

For a practical implementation of how MPC works in trading, Boyd et al. (2017) and Li, Uysal 

and Mulvey (2022) show how real-world concerns like transaction costs and holding costs are 

incorporated in the model and how constraints like drawdown and turnover limits affect the 

problem. 

  



Chapter 7 Reinforcement Learning 

Reinforcement Learning (RL) forms one of the paradigms of machine learning and is suitable to 

be applied in portfolio optimization due to its core as a sequential decision-making framework 

under uncertainty. Compared to convex optimization models that optimize a static objective 

based on fixed inputs, RL models learn optimal investment strategies through interaction with its 

environment over time. 

Castro, Tamar and Mannor (2012) shows an RL algorithm involving minimizing risk with a 

policy gradient approach in Markov Decision Processes. Prashanth and Ghavamzadeh (2014) 

illustrates actor-critic algorithms for risk-sensitive RL. Here, we develop a simple, online, 

deterministic policy that greedily minimizes a mean-variance loss using gradient descent. 

A traditional RL framework is characterized by 

1. States – represent the information available at a given time. 

2. Actions – what the RL agent does to react to the state 

3. Objective function – the objective that enables the agent to learn the policy that 

maximizes the cumulative expected reward over time. This is analogous to the objective 

function in standard optimization problems 

4. Policy – a rule that maps states to actions such as a SoftMax or greedy policy in standard 

RL problems 

5. Rewards – quantifies the quality of an action taken in a particular state 

We now illustrate the formulation of portfolio optimization with RL using the “Mag 7” data 

similar to the previous chapter using the last 3 quarters of the year: Q2, Q3, Q4. Our goal is to 

learn the portfolio weights 𝑤 for the beginning of each quarter that achieves the target return 

while keeping the portfolio variance low. 

It does this through minimizing the mean-variance objective function that we define as the loss 

function: 

𝐿𝑡(𝑤𝑡) =
1

2
(𝜇𝑡

𝑇𝑤𝑡 − 𝑟∗)2 +
𝜆

2
𝑤𝑡

𝑇Σ𝑡𝑤𝑡 



where 𝑟∗ is the target return each day, the first term penalizing deviation from 𝑟∗, and the 

second term penalizing risk. 

The policy 𝝅(𝒔𝒕) → 𝑎𝑡 in which the RL agent uses to decide the action based on the state 𝑠𝑡 is 

the online learning rule 

𝜋(𝑠𝑡) = 𝑤𝑡+1 = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑤𝑡 − 𝜂∇𝐿𝑡(𝑤𝑡)), 

∇𝐿𝑡(𝑤𝑡) = (𝜇𝑡
𝑇𝑤𝑡 − 𝑟∗)𝜇𝑡 + 𝜆Σ𝑡𝑤𝑡 

where ∇𝐿𝑡(𝑤𝑡)) is the gradient descent of the loss function, 𝜂 is the learning rate, and we 

normalize the update as the self-financing constraint on the portfolio weights. The mathematical 

convenience of having 1 2⁄  as the coefficient in the two terms of the loss function can also be 

seen when deriving the policy gradient update rule.  

The portfolio weights at day 1 of Q2 are initialised to 0. At each timestep (day), the RL agent 

takes an action 𝑎𝑡 ∈ Α 

𝑎𝑡 = 𝑤𝑡+1 − 𝑤𝑡 

to update our weight estimates based on the covariance matrix and mean return vectors from the 

previous day. The RL agent then observes the reward 𝑅𝑡 at time 𝑡 to evaluate its action in that 

state 𝑠𝑡. 

We define the reward 𝑹𝒕 as the return minus the risk penalty from the previous day 

𝑅𝑡(𝑤𝑡) = 𝜇𝑡
𝑇𝑤𝑡 − 𝜆𝑤𝑡

𝑇Σ𝑡𝑤𝑡, 

𝜇𝑡 = 𝑟𝑡−1 − 1; 𝜇𝑡 ∈ ℝ𝑛, 

Σ𝑡 = 𝜇𝑡𝜇𝑡
𝑇; Σ𝑡 ∈ ℝ𝑛×𝑛 

where 𝜇𝑡 is the return from the previous day and Σ𝑡 is the crude 1-day covariance estimate from 

the previous day. 

The State space 𝒔𝒕 ∈ 𝑆 from which our agent considers when taking an action is defined as 

𝑠𝑡 = (𝑤𝑡, 𝑟𝑡−1) 

where 𝑤𝑡 is the portfolio weights at time 𝑡, 𝑟𝑡−1 is the realized returns at time 𝑡 − 1 (used to 

estimate 𝜇𝑡 and Σ𝑡. 



 

Setting 𝜆 = 1 for simplicity, 𝜂 = 0.1 and the scaled daily return 32.21%
63⁄ =  0.51% of the 

equal-weighted portfolio as the daily target benchmark, we obtain results as in Fig. 7.1 below. 

 

Fig. 7.1: Performance of RL model 

It performs better than all 3 previous models: SPO, MPO, and MPC with a simple return across 

the three quarters of 26.77%. However, on a Sharpe ratio basis it performs worse than either the 

MPC or SPO model with a value of 1.23 compared to 1.55 and 1.57 of the 2 models respectively. 

And on a Std. Dev. basis it performs the worse out of all models with a value of 17.94%, 

compared with 5.07%, 6.68%, 4.88% for the SPO, MPO, and MPC models respectively as 

shown in Table 8.1 below. 

 

Strategy Return (%) Std Dev (%) Sharpe Ratio 

SPO 12.69 5.07 1.57 

MPO-OL 5.25 6.68 0.08 

MPC 12.30 4.88 1.55 

RL Online 26.77 17.94 1.23 



Equal-weight 32.21 6.21 4.43 

 

Table 8.1: Summary of performance of all 4 models against the benchmark EW 

The equal-weighted portfolio outperforms all optimization models by far in this scenario. This 

highlights the drawdown of optimization models in practice as the return 𝜇 and covariance 

matrix Σ estimates are the deciding factor in performance and historical estimates would usually 

result in poor out of sample performance. 

  



Chapter 8 Conclusions 

The mathematical formulation of portfolio theory and portfolio optimization were derived from 

first principles. Different optimization models were developed and implemented using real data 

of the “Mag 7” stocks. 

Optimization models worked better than the simple strategies such as holding an equal-weight 

portfolio provided that estimates of future returns and risks are accurate. In reality, historical 

estimates are often inaccurate and chapter 6 showed what the Markowitz mean-variance 

optimization framework could look like in practice. 

Still, optimization models incorporating control such as the MPC model in Chapter 6 or the RL 

model in Chapter 7 showed more promising results and perhaps can be improved upon with 

better tuning of parameters, or better constraints to leverage evolving data at each control period. 

Further experiments including real-world constraints such as trading costs or holding limits 

would make it more realistic and give a better indication of performance of the different models 

in practice. The models in this paper were only tested on a single scenario, including stochastic 

programming into the formulation of the problem and stochastic scenarios in the backtests would 

also show more realistic results of the models. 

As estimation is the dominant factor in the mean-variance framework, estimation models of 

covariance and mean estimates incorporated in the strategies could further expand our 

understanding of the problem. Formulating portfolio optimization with different models would 

also be interesting, perhaps in a factor-based model such as the Fama and French (1993, 2015) 

models.  
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